Functional Similarities between the Protein O-Mannosyltransferases Pmt4 from Bakers' Yeast and Human POMT1*

نویسندگان

  • Daniela Bausewein
  • Jakob Engel
  • Thomas Jank
  • Maria Schoedl
  • Sabine Strahl
چکیده

Protein O-mannosylation is an essential post-translational modification. It is initiated in the endoplasmic reticulum by a family of protein O-mannosyltransferases that are conserved from yeast (PMTs) to human (POMTs). The degree of functional conservation between yeast and human protein O-mannosyltransferases is uncharacterized. In bakers' yeast, the main in vivo activities are due to heteromeric Pmt1-Pmt2 and homomeric Pmt4 complexes. Here we describe an enzymatic assay that allowed us to monitor Pmt4 activity in vitro We demonstrate that detergent requirements and acceptor substrates of yeast Pmt4 are different from Pmt1-Pmt2, but resemble that of human POMTs. Furthermore, we mimicked two POMT1 amino acid exchanges (G76R and V428D) that result in severe congenital muscular dystrophies in humans, in yeast Pmt4 (I112R and I435D). In vivo and in vitro analyses showed that general features such as protein stability of the Pmt4 variants were not significantly affected, however, the mutants proved largely enzymatically inactive. Our results demonstrate functional and biochemical similarities between POMT1 and its orthologue from bakers' yeast Pmt4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Demonstration of mammalian protein O-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity.

Defects in O-mannosylation of alpha-dystroglycan are thought to cause certain types of congenital muscular dystrophies with neuronal migration disorders. Among these muscular dystrophies, Walker-Warburg syndrome is caused by mutations in the gene encoding putative protein O-mannosyltransferase 1 (POMT1), which is homologous to yeast protein O-mannosyltransferases. However, there is no evidence ...

متن کامل

Characterization of the PMT Gene Family in Cryptococcus neoformans

BACKGROUND Protein-O-mannosyltransferases (Pmt's) catalyze the initial step of protein-O-glycosylation, the addition of mannose residues to serine or threonine residues of target proteins. METHODOLOGY/PRINCIPAL FINDINGS Based on protein similarities, this highly conserved protein family can be divided into three subfamilies: the Pmt1 sub-family, the Pmt2 sub-family and the Pmt4 sub-family. In...

متن کامل

Role of protein O-mannosyltransferase Pmt4 in the morphogenesis and virulence of Cryptococcus neoformans.

Protein O mannosylation is initiated in the endoplasmic reticulum by protein O-mannosyltransferases (Pmt proteins) and plays an important role in the secretion, localization, and function of many proteins, as well as in cell wall integrity and morphogenesis in fungi. Three Pmt proteins, each belonging to one of the three respective Pmt subfamilies, are encoded in the genome of the human fungal ...

متن کامل

Membrane association is a determinant for substrate recognition by PMT4 protein O-mannosyltransferases.

Protein O-mannosylation represents an evolutionarily conserved, essential posttranslational modification with immense impact on a variety of cellular processes. In humans, O-mannosylation defects result in Walker-Warburg syndrome, a severe recessive congenital muscular dystrophy associated with defects in neuronal migration that produce complex brain and eye abnormalities. In mouse and yeasts, ...

متن کامل

Aspergillus nidulans Pmts form heterodimers in all pairwise combinations

Eukaryotic protein O-mannosyltransferases (Pmts) are divided into three subfamilies (Pmt1, Pmt2, and Pmt4) and activity of Pmts in yeasts and animals requires assembly into complexes. In Saccharomyces cerevisiae, Pmt1 and Pmt2 form a heteromeric complex and Pmt 4 forms a homomeric complex. The filamentous fungus Aspergillus nidulans has three Pmts: PmtA (subfamily 2), PmtB (subfamily 1), and Pm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 291  شماره 

صفحات  -

تاریخ انتشار 2016